A Constitutive Model for Predicting the Large Deformation Thermomechanical Behavior of Fluoropolymers

نویسنده

  • J. S. Bergström
چکیده

This paper presents a newly developed constitutive model for predicting the timeand temperaturedependent mechanical behavior of fluoropolymers, including PTFE, PFA and FEP. The mathematical details of the theory and its connection with the underlying microstructure are presented together with aspects of its numerical implementation into large-strain finite element simulations. A set of uniaxial tension, uniaxial compression, hydrostatic compression, multi-cycle thermomechanical, and small sample punch (disk bend) tests were performed on glass fiber filled PTFE to evaluate the predictive capabilities of the model. The tests were performed using monotonic and cyclic load histories, at different deformation rates and temperatures. A direct comparison between the experimental data and the model predictions show that the constitutive theory accurately captures the material response. The model is also capable of predicting the influence of hydrostatic stress on both the deviatoric and volumetric flow rates, enabling accurate predictions of fluoropolymers with small amounts of porosity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential-type Constitutive Equation in Order to Use in Modeling the Warm Deformation of a Eutectoid Steel

The main contribution of the present work is to investigate the capability of exponential-type constitutive equationto model the warm deformation flow curves of a eutectoid steel in the temperature range of 620-770 °C andat the strain rates in the range of 0.01-10 s-1 conducted on a Gleeble-1500 thermomechanical simulator. Warmdeformation in this temperature range f...

متن کامل

A Corotational Elastic Constitiutive Model and its Application to the Analysis of a Large Deformation Closed Cycle

In this paper, an elastic constitutive model based on the Eulerian corotational rate of the logarithmic strain tensor is proposed. Using this model, the large deformation of a closed cycle containing tension, shear, compression and inverse shear is analyzed. Since the deformation path includes a closed cycle and the material is considered as an isotropic elastic material, the normal and shear c...

متن کامل

A Corotational Elastic Constitiutive Model and its Application to the Analysis of a Large Deformation Closed Cycle

In this paper, an elastic constitutive model based on the Eulerian corotational rate of the logarithmic strain tensor is proposed. Using this model, the large deformation of a closed cycle containing tension, shear, compression and inverse shear is analyzed. Since the deformation path includes a closed cycle and the material is considered as an isotropic elastic material, the normal and shear c...

متن کامل

A Constitutive Model for Sands

In this paper, an elastoplastic constitutive model is presented for predicting sandy soil behavior under monotonic and cyclic loadings. The model is based on the CJS3 model that takes into account deviatoric and isotropic mechanisms of plasticity. The flow rule in deviatoric mechanism is non-associated and a kinematic hardening law controls the evolution of the &#10yield surface. In the present...

متن کامل

A Constitutive Model for Sands

In this paper, an elastoplastic constitutive model is presented for predicting sandy soil behavior under monotonic and cyclic loadings. The model is based on the CJS3 model that takes into account deviatoric and isotropic mechanisms of plasticity. The flow rule in deviatoric mechanism is non-associated and a kinematic hardening law controls the evolution of the yield surface. In the present s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004